Early biochemical events in insulin-stimulated fluid phase endocytosis
Diana M. Pitterle, Robert T. Sperling, Martin G. Myers, Jr., Morris F. White and Perry J. Blackshear

You might find this additional information useful...

This article cites 59 articles, 28 of which you can access free at:
http://ajpendo.physiology.org/cgi/content/full/276/1/E94#BIBL

This article has been cited by 2 other HighWire hosted articles:
Brown Adipose Tissue: Function and Physiological Significance
B. CANNON and J. NEDERGAARD
[Abstract] [Full Text] [PDF]

Insulin modulates PC-1 processing and recruitment in cultured human cells
C. Menzaghi, R. Di Paola, G. Baj, A. Funaro, A. Arnulfo, T. Ercolino, N. Surico, F. Malavasi and V. Trischitta
Am J Physiol Endocrinol Metab, March 1, 2003; 284 (3): E514-520.
[Abstract] [Full Text] [PDF]

Medline items on this article's topics can be found at http://highwire.stanford.edu/lists/artbytopic.dtl on the following topics:
Biochemistry .. Kinases
Biochemistry .. Insulin Receptors
Biochemistry .. Phosphatidylinositol
Oncology .. MAP/ERK Kinase
Physiology .. Endocytosis
Medicine .. Insulin

Updated information and services including high-resolution figures, can be found at:
http://ajpendo.physiology.org/cgi/content/full/276/1/E94

Additional material and information about AJP - Endocrinology and Metabolism can be found at:
http://www.the-aps.org/publications/ajpendo

This information is current as of May 3, 2005.
Early biochemical events in insulin-stimulated fluid phase endocytosis

DIANA M. PITTERLE,1 ROBERT T. SPERLING,2 MARTIN G. MYERS, J.R.,3 MORRIS F. WHITE,3 AND PERRY J. BLACKSHEAR1,4

1Departments of Medicine and Biochemistry, Duke University Medical Center, Durham 27710; 2Department of Medicine, Brigham and Women’s Hospital, Boston 02115; and 3Research Division, Joslin Diabetes Center, Department of Medicine and Program in Cell and Developmental Biology, Harvard Medical School, Boston, Massachusetts 02215

Pitterle, Diana M., Robert T. Sperling, Martin G. Myers, Jr., Morris F. White, and Perry J. Blackshear. Early biochemical events in insulin-stimulated fluid phase endocytosis. Am. J. Physiol. 276 (Endocrinol. Metab. 39): E94–E105, 1999.—We examined the initial molecular mechanisms by which cells nonselectively internalize extracellular salutes in response to insulin. Insulin-stimulated fluid phase endocytosis (FPE) was examined in responsive cells, and the roles of the insulin receptor, insulin receptor substrate-1 (IRS-1), phosphatidylinositol 3'-kinase (PI 3'-kinase), Ras, and mitogen-activated protein kinase (MEK) were assessed. Active insulin receptors were essential, as demonstrated by the stimulation of FPE by insulin in HIRc-B cells (Rat-1 cells expressing 1.2 × 106 normal insulin receptors/cell) but not in untransfected Rat-1 cells or in Rat-1 cells expressing the inactive A/K1018 receptor. IRS-1 expression augmented insulin-stimulated FPE, as assessed in 32D cells, a hematopoietic precursor cell line lacking endogenous IRS-1. Insulin-stimulated FPE was inhibited in mouse brown adipose tissue (BAT) cells expressing the 17N dominant negative mutant Ras and was augmented in cells expressing wild-type Ras. The MEK inhibitor PD-98059 had little effect on insulin-stimulated FPE in BAT cells. In 32D cells, but not in HIRc-B and BAT cells, insulin-stimulated FPE was inhibited by 10 nM wortmannin, an inhibitor of PI 3'-kinase. The results indicate that the insulin receptor, IRS-1, Ras, and, perhaps, in certain cell types, PI 3'-kinase are involved in mediating insulin-stimulated FPE.

pinocytosis; signaling pathways; wortmannin; PD-98059; horseradish peroxidase

INSULIN ELICITS both metabolic and mitogenic responses in cells expressing its receptor, and recent studies suggest that these responses are likely to be mediated through separate intracellular signaling pathways (32, 45, 56). Metabolic responses include rapid increases in the cellular uptake and storage of glucose, lipids, and amino acids and the inhibition of cellular processes that release these molecules in the bloodstream. The biochemical mechanisms that mediate many of these acute metabolic effects of insulin remain poorly understood.

In contrast, the growth-promoting or mitogenic effects of insulin appear to involve many of the pathways utilized by other growth factors whose receptors have intrinsic tyrosine kinase activity (47). Common features include 1) activation of the intrinsic tyrosine kinase activity of the receptor on binding of the growth factor; 2) autophosphorylation of the receptor on tyrosine residues; 3) activation of phosphatidylinositol 3'-kinase (PI 3'-kinase); 4) activation of Ras; and 5) activation of the mitogen-activated protein kinase (MAP kinase) cascade. For most receptor protein tyrosine kinases, the phosphotyrosines generated within their receptors become binding sites for the src-homology 2 domains of proteins such as PI 3'-kinase and the GRB2/son of sevenless (SOS) or GRB2/Shc complexes that can activate Ras (53).

Although the insulin receptor contains phosphotyrosines that may be bound in a similar fashion, the primary signaling pathway is mediated through receptor phosphorylation of a large intracellular protein, insulin receptor substrate-1 (IRS-1), on tyrosines; the activation of PI 3'-kinase and Ras occurs when PI 3'-kinase and the GRB2/SOS complex bind to the phosphotyrosines in IRS-1. In addition, several other proteins have been shown to bind to the phosphotyrosines in IRS-1, including the tyrosine photatase Syp and the cytoplasmic tyrosine kinase Nck. Many of the available data indicate that phosphorylated IRS-1 acts as the scaffold upon which an insulin-dependent signaling complex is built (reviewed in Ref. 36).

Insulin and other growth factors have another feature in common: in cells that express their receptors, they stimulate a rapid increase in ruffling and fluid phase endocytosis (FPE; reviewed in Ref. 42). In the case of insulin, internalization of fluid phase vesicles is one of at least four different vesicular trafficking events that occur in response to the hormone, the others being the internalization of the insulin receptor in dathrin-coated vesicles, the recruitment of the intracellular vesicles carrying the glucose transporter to the plasma membrane, and the increase in caveolae at the plasma membrane (4, 6, 46). Each of these vesicular trafficking events occurs within minutes of receptor occupancy by insulin.

The term FPE describes the nonspecific internalization of extracellular fluid in large vesicles derived from the plasma membrane of cells. Addition of sol-
uble markers such as horseradish peroxidase (HRP), \([^{14}C]sucrose\), or fluorescent dextran to the extracellular fluid permits this process to be measured (39, 58). FPE is distinguished from receptor-mediated endocytosis by a variety of criteria: 1) FPE is inhibited by amiloride, a reagent that inhibits the \(Na^+/H^+\) exchanger (55); 2) fluid phase vesicles are not limited by the size constraints imposed by a clathrin coat as are the vesicles for receptor-mediated endocytosis (43); and 3) FPE increases linearly with marker concentration and incubation time while receptor-mediated endocytosis is a saturable process (58). Like other forms of endocytosis, FPE is inhibited at 4°C.

A variety of physiological roles have been proposed for growth factor-stimulated FPE, including 1) nutrient uptake, 2) removal of insulin and other compounds from the immediate extracellular space, 3) downregulation of receptors, 4) plasma membrane turnover, 5) uptake of extracellular components for subsequent presentation to immunological cells, and 6) rapid readjustment of intracellular ion concentrations (2, 25, 27, 57, 59). Although the actual physiological functions of this response have not been identified, it is likely that they will vary depending on the type of cell in question. In addition, insulin-stimulated FPE may simply be a by-product of other responses such as plasma membrane ruffling (5) or cell motility (49). Establishing the signaling molecules involved in the pathways from the receptor to these responses (ruffling, FPE, motility) will ultimately allow a determination of their identity or distinctness. To learn more about the mechanism of insulin-stimulated FPE, we have studied this process in a variety of insulin-responsive cell lines using various biochemical tools to assess the involvement of the insulin receptor tyrosine kinase, IRS-1, PI 3-kinase, Ras, and the MAP kinase cascade. Our results indicate that the insulin receptor, IRS-1, and Ras are involved in mediating insulin-stimulated FPE, whereas the role of PI 3-kinase appears to be minimal and/or cell-type dependent.

EXPERIMENTAL PROCEDURES

Cells. Cell lines were maintained at 37°C in a 5% CO\(_2\)-95% air atmosphere. Media and additives were purchased from Life Technologies (Grand Island, NY) unless otherwise noted. All media contained 2 mM glutamine (JRH Biosciences, Lenexa, KS), 100 U/ml penicillin (JRH Biosciences), and 100 µg/ml streptomycin (JRH Biosciences).

Rat-1, H1Rc-B, and A/K1018-B cells (28, 30–32, 51) were generous gifts from Drs. D. A. McClain and J. M. Olefsky (University of California, San Diego, CA) and from A. Ullrich (Genentech, South San Francisco, CA). Rat-1 fibroblasts were maintained in minimal essential medium (with Earle’s salts) supplemented with 10% (vol/vol) fetal calf serum (FCS). The mutant cell lines were grown in F-12/Dulbecco’s modified Eagle’s medium (1:1) deficient in hypoxanthine and thymidine and supplemented with 10% (vol/vol) FCS. NIH 3T3 HIR 3.5 cells and C127 HIR 4–60 cells were generously provided by Dr. J. Whitaker (State University of New York, Stonybrook, NY) and were grown in DMEM supplemented with 10% (vol/vol) FCS. Chinese hamster ovary (CHO)-T cells were a gift from Dr. R. A. Roth (Stanford University, Palo Alto, CA) and were grown in Ham’s F-12 medium supplemented with 10% (vol/vol) FCS. H35 cells were a gift from Dr. J. W. Kontz (University of Tennessee, Knoxville, TN) and were maintained in low glucose-DMEM supplemented with 5% (vol/vol) FCS and 5% (vol/vol) calf serum. 32D cells and WEHI cells that were used to prepare conditioned medium, a source of interleukin-3 necessary for the growth of 32D cells, were described previously (54). Brown adipose tissue (BAT) cells were a gift from Drs. U. C. Kozak and L. P. Kozak (Jackson Laboratory, Bar Harbor, ME) and were grown in DMEM supplemented with 10% (vol/vol) FCS, biotin (0.33 µM final concentration), calcium pantothenate (0.17 µM final concentration), and ascorbic acid (1.0 mM final concentration; Sigma, St. Louis, MO). Because BAT cells are trypsin sensitive, collagenase or mechanical methods were employed to release the cells from flask surfaces.

Addition of agents. Regular insulin (Pork; Novo Nordisk, Princeton, NJ) was stored at 4°C and diluted in DMEM-1% BSA. 5- (N,N-dimethyl)-amiloride and amiloride (Sigma Chemical) were dissolved in Me\(_2\)SO at 60 µM and were diluted 20-fold in media for final concentrations of 3 mM amiloride and 5% (vol/vol) Me\(_2\)SO. Wortmannin (Sigma) was dissolved in Me\(_2\)SO to give a 10 mM stock solution and was stored at −20°C until use. Final concentrations of wortmannin in media contain 0.3% (vol/vol) Me\(_2\)SO. Inhibition of protein kinase C (PKC) with 1,2-diacylglycerol (1, 10), a generous gift from Dr. Alan Saltiel (Parke-Davis Warner-Lambert, Ann Arbor, MI), was dissolved in Me\(_2\)SO (20 mM) and stored at −20°C until use. Final concentrations of PD-98059 were 100 µM in 0.5% (vol/vol) Me\(_2\)SO; controls were treated in parallel with an equivalent concentration of Me\(_2\)SO.

Measurement of FPE in adherent cell lines. Two days before each experiment, cells were plated in normal growth medium at a concentration of 3 × 10\(^5\) cells/well in 24-well plates (Costar, Cambridge, MA) and incubated overnight at 37°C. Eighteen to 24 h later, the cells were washed in phosphate-buffered saline (PBS) and incubated overnight (16–20 h) at 37°C in serum-free DMEM-1% BSA to make them quiescent. Cells were treated with 70 nM insulin in all experiments except where indicated. The fluid phase marker fluorescein isothiocyanate (FITC)-conjugated dextran (FD; molecular weight = 70,000; Molecular Probes, Eugene, OR) was dissolved in starvation medium and added to each well to a final concentration of 1 mg/ml. After various times of exposure to FD, the dye solution was aspirated, and each well was immediately washed with ice-cold PBS containing 1 mg/ml BSA (US Biochemical, Cleveland, OH), followed by two washes with ice-cold PBS. After the last PBS wash, 0.200 ml of 0.05% (wt/vol) trypsin (J RH Biosciences) in PBS was added. The plates were incubated on ice for ~10 min, until the cells were released from the plastic. Next, 0.165 ml of PBS containing 10% (vol/vol) FCS was added to each well to inactivate the trypsin, and the cells were transferred to Falcon tubes (Falcon 2052; Becton-Dickinson, Lincoln Park, NJ). Formaldehyde (0.135 ml of 3% in PBS containing 10% (vol/vol) FCS was added to each tube and mixed gently; the final formaldehyde concentration was 1%. The cells were stored at 4°C until analysis. Fluorescence in individual cells was measured using fluorescence-activated cell sorters (FACS) within 2 days of each experiment. The FACStar Plus and FACScan Flow Cytometers (Becton-Dickinson, Mountain View, CA) were equipped with argon lasers operating at 488 nm and 50 mW. FITC fluorescence was measured using a 530- or 30-nm filter. Fluorescence intensity was recorded only from cells that were alive during the FD incubation; these cells exhibited characteristic size and scatter factors, gating parameters that were determined before analysis. Data were analyzed by the Consort 32 utilizing the LysysI analysis and...
with HRP-conjugated goat anti-rabbit antibody diluted 1:5,000 in the blocking solution. Again, four washes in TBS-Tween were performed as before, and the bands were visualized using the enhanced chemiluminescence reagents (Amer sham, Arlington Heights, IL). Blots were then stripped, reblo cked, and reprobed with a rabbit antibody to the insulin re ceptor (catalog no. sc-710; Santa Cruz Biotechnology, Santa Cruz, CA) used at a dilution of 1:1,000 in blocking buffer. Sub sequent steps were performed as described above.

Isolation of BAT cell lines expressing Ras and dominant negative 17N Ras. Vectors p21 PNeoSV(X) and p21 P-Rash(17N) for expression of the dominant negative 17N mutant of H-Ras were kindly provided by Dr. Channing Der (University of North Carolina, Chapel Hill, NC; see Refs. 8 and 40). BAT cells of line B4–4 were plated at 1 × 10^6 cells/100 mm dish (Costar) 2 days before transfection. Approximately 20 µg of plasmid DNA were transfected in cells using the BES-calcium phosphate-DNA precipitation protocol as described (17). Because the wild-type H-Ras expression vector, pH06T1, used in these experiments did not contain an intrinsic selectable marker, the plasmid pSV2Neo was cotransfected with it at a ratio of 1:10 (pSV2Neo-pH06T1; see Ref. 8). Cells were selected for neomycin resistance initially in medium supplemented with 250 mg/ml G418 (Life Technologies). After 2 wk, survivors were replated at 1 × 10^6 cells/100-mm dish in medium containing 500 mg/ml Geneticin. Resistant colonies were picked using a pipet tip (BAT cells are trypsin sensitive) and were placed in 24-well plates (Costar), where they were allowed to grow to confluence before expanding to 100-mm dishes. Colonies that overexpressed Ras or the 17N dominant negative mutant were identified by Western blot analysis of whole cell lysates (100 µg/lane) that had been separated on 12% SDS-PAGE gels and transferred to nylon membranes (PVDF, 0.2 µm; Bio-Rad) as described (8). After blocking membranes in TBS (10 mM Tris pH 7.5, 150 mM NaCl) containing 5% nonfat dry milk and 0.05% Tween 20 for 1 h at room temperature, the membranes were incubated overnight at 4°C in the same blocking solution containing a rat monoc oanal antibody to Ras [v-H-Ras (259); sc-35; Santa Cruz Biotechnology] used at a dilution of 1:300 (vol/vol). After four washes of at least 10 min each in TBS-Tween, membranes were incubated with HRP-conjugated rabbit anti-rat antibody at a dilution of 1:3,000. After washing as before, bands were visualized using chemiluminescence reagents. Clones that overexpressed the Ras proteins were expanded for further analysis of insulin-stimulated FPE.

Western blotting for MEK. Cells plated in 24-well plates as described above were made quiescent by culturing in DMEM-1% BSA overnight; the cells were pretreated with the MEK inhibitor PD-98059 (10 µM) or U0126 (10 µM) Me2SO alone for 30 min at 37°C and then treated with 70 nM insulin (final concentration) for 5, 10, 15, 20, or 25 min in DMEM-1% BSA or with DMEM-1% BSA as a control. At the end of the treatment, the medium was aspirated from the wells, and SDS-PAGE sample buffer was added directly to the cells. Samples were collected in Eppendorf tubes, sonicated to reduce viscosity, and loaded on 12% SDS-PAGE gels. After electrophoresis and transfer to PVDF membranes, blots were blocked in a solution of 4% BSA-TBS-Tween (10 mM Tris, 100 mM NaCl, and 0.05% Tween 20) and incubated for 1 h at room temperature with rabbit anti-active (phospho) MEK antibody (Promega, Madison, WI) used at a dilution of 1:20,000 in the same blocking buffer. Blots were washed extensively (at least 4 times for 15 min each) in TBS-Tween and then with the secondary antibody (HRP-conjugated goat anti-rabbit) at a dilution of 1:5,000 in the BSA blocking buffer for 1 h at room
temperature. Blots were washed as before, and bands were visualized using the Amersham chemiluminescence reagents as described above.

RESULTS

Initial experiments were done to determine which insulin-responsive cell lines exhibited the highest rate of insulin-stimulated FPE. The intracellular accumulation of the fluorescent fluid phase marker FD was measured under control and insulin-stimulated conditions (70 nM insulin) in an immortalized liver cell line (H35), BAT-derived cell lines (BAT B4–4, B7, and B7(old)), and several cell lines overexpressing the human insulin receptor, including CHO-T cells, Rat-1 fibroblasts (HIRc-B), C127 cells (C127 HIR 4–60), and NIH 3T3 fibroblasts (NIH 3T3 HIR 3.5; Fig. 1, A and B). In the presence of insulin, the relative intracellular fluorescence was increased 0.5- to 8-fold over that measured in the unstimulated cell lines.

HIRc-B cells, which express ~1.2 × 10^6 insulin receptors/cell (30), were used for further experiments, since they exhibited the strongest response to insulin with regard to accumulation of FD (Fig. 1). The use of FD as a marker of FPE in these cells was validated by showing that its uptake was nonsaturable with increasing FD concentration or time of incubation (Fig. 2, A and B). In addition, another commonly used marker of FPE, HRP, was also internalized by HIRc-B cells more rapidly in the presence of insulin (4-fold increase over basal, data not shown).

Fluorescence microscopy of the insulin-stimulated HIRc-B cells after incubation with FD revealed the presence of large fluorescent vesicles (0.6–4.4 µm diameter) resembling macropinocytic vesicles (43). Smaller...
vesicles were also apparent, suggesting that some uptake might be occurring in vesicles derived from clathrin-coated pits, which are generally 100–150 nm in diameter (data not shown). To determine the proportion of FD uptake in HIRc-B cells that was independent of receptor-mediated endocytosis, we took advantage of the fact that FPE is more sensitive to amiloride than receptor-mediated endocytosis (55). HIRc-B cells pretreated with 3 mM amiloride exhibited only 12% of the insulin-stimulated FPE observed in control cells (Fig. 2C), suggesting that most of the insulin-stimulated FD internalization in this system was amiloride sensitive and thus due to FPE.

The results shown in Fig. 2B suggested that insulin-stimulated FD uptake was most rapid in the initial 30 min of treatment and then continued at a somewhat slower rate. This apparent decrease in uptake rate has been attributed to the return of vesicles containing the marker to the plasma membrane, followed by release of the marker in the extracellular fluid. To assess the effect of insulin on this recycling of endocytic vesicles, we preloaded HIRc-B cells with FD and then, after careful washing, incubated them in marker-free medium at 37°C or 4°C in the presence or absence of insulin. At the indicated times, cells were harvested and the relative amount of intracellular FD was measured. There was a measurable level of endosome recycling to the plasma membrane under basal conditions (Fig. 3). However, the level of FD remaining in the insulin-treated cells was similar to or greater than that seen in the control cells, indicating that insulin did not increase the recycling of marker-filled endosomes in HIRc-B cells under these conditions.

We also examined the dose dependence of insulin-stimulated FPE in the HIRc-B cells. The stimulatory effect of insulin on FPE was concentration dependent, with half-maximal stimulation occurring between 0.07 and 0.7 nM insulin (Fig. 4A). To assess the time course of the insulin effect, HIRc-B cells were treated with 70 nM insulin for the indicated times and exposed to FD for the final 15 min (Fig. 4B). After 15 min of insulin treatment, the rate of FD uptake was essentially maximal, at 3.7 times control. This rate remained elevated for at least 4 h, at which time it was 3.8 times control (Fig. 4B).

Insulin-stimulated FPE is dependent on insulin receptor tyrosine kinase activity. The HIRc-B cell line is a derivative of Rat-1 cells, a fibroblast line that expresses only ~1,700 endogenous insulin receptors/cell (30). To determine whether the insulin receptor and its intrinsic protein tyrosine kinase activity were necessary for mediating insulin-stimulated FPE, the response of

Fig. 3. Effect of insulin on recycling of FD-loaded endosomes to the plasma membrane. Quiescent, FD-loaded HIRc-B cells were incubated for various lengths of time at 37°C or 4°C in DMEM-1% BSA (squares) or in DMEM-1% BSA and 70 nM insulin (circles). At the indicated times, cells were washed and fixed, and the fluorescence remaining in the cells was quantified by FACS analysis. Each point represents the mean ± SD fluorescence values from triplicate samples.

Fig. 4. FD accumulation in HIRc-B cells: dose response to insulin and time course. A: quiescent HIRc-B cells were treated with the indicated concentrations of insulin ([Insulin]) in the presence of FD for 60 min. Intracellular fluorescence was then quantified by FACS analysis. B: quiescent HIRc-B cells were treated with 70 nM insulin (hatched bars) or carrier alone (open bars) for the indicated lengths of time. FD was included for the last 15 min of each treatment. Relative fluorescence per cell was then assessed by FACS analysis. Bars represent the mean ± SD average relative fluorescence per cell from 6 samples. Difference between insulin and control was highly significant (P < 0.0005) at each time point, using Student’s t-test.
Rat-1 cells to insulin was compared with that of HIRc-B cells. As shown in Fig. 5, the relative fluorescence measured in the parental Rat-1 cells treated with insulin (70 nM) was only 1.1-fold greater than that measured in the unstimulated cells. HIRc-B cells treated in parallel exhibited a 7.2-fold increase in response to insulin stimulation, indicating that the overexpressed insulin receptors were mediating this response.

The requirement for the tyrosine kinase activity of the insulin receptor was determined by investigating the response of a Rat-1 cell line that expresses a mutant form of the human insulin receptor, Rat-1 A/K1018-B cells. This line expresses approximately equal amounts of the IRS-1 and IRS-1 (Fig. 6, Ic). Thus the low numbers of endogenous insulin receptors present in the 32D/IRS-1 cells (~500/cell) were apparently sufficient to mediate insulin-stimulated FPE in the presence of IRS-1. We conclude that the presence of IRS-1 was responsible and necessary for the increased rate of insulin-stimulated FPE observed in 32D/IRS-1 and 32D/IR/IRS-1 cells compared with 32D or 32D/IR cells. Overexpression of wild-type H-Ras augments insulin-stimulated FPE, whereas expression of a dominant negative 17N Ras represses it. A BAT cell line (BAT B4–4) was stably transfected with wild-type H-Ras or the dominant negative 17N H-Ras constructs (40). Clones that expressed the exogenous proteins were selected by Western blot analysis of whole cell lysates.
as shown in Fig. 8A. The Ras protein was identified by its size on SDS-PAGE gels (~21 kDa) and its reactivity with both a nonspecific Ras antibody (Fig. 8A) and a second antibody that selectively detected the H-Ras expressed from the transfected plasmid (not shown). Good expression was observed in several clones of the wild-type H-Ras (shown are clones 2–2 and 5) and in one clone of the dominant negative 17N Ras mutant.

FPE in response to insulin was measured in these cell lines. The dose-response curve shown in Fig. 8B indicated that expression of wild-type Ras augmented the response to insulin at every concentration used. Both clones expressing the wild-type Ras protein showed greater insulin-stimulated FPE than the untransfected cells. The insulin-stimulated FPE in these Ras clones was also greater than that in BAT B4–4 cells transfected with the vector alone that were used as controls in other experiments (not shown). Conversely, the expression of the dominant negative 17N Ras inhibited insulin-stimulated FPE at every concentration where stimulation of FPE was observed in the control cells (Fig. 8B). The basal level of FPE was largely unaffected by the expression of the dominant negative Ras (9.7 ± 2.7 relative fluorescence units/cell for the controls compared with 13.6 ± 1.0 for the mutant, means ± SD). These results suggest that Ras participates in the signaling pathways between the activated insulin receptor and the cellular machinery for FPE.

Ras activates the MAP kinase cascade, an important pathway for transmitting mitogenic signals from growth factor receptors to the nucleus. Recently, PD-98059, a relatively specific inhibitor of the MEK protein, has been developed (10). This inhibitor appears to have no effect on a variety of other protein kinases in cells, including MAP kinase, src tyrosine kinase, and Raf-1 (1). To assess whether the activity of MEK and the MAP kinase pathway were essential for insulin stimulation of FD uptake in BAT cells, we pretreated one set of cells with 100 µM PD-98059 for 30 min before measuring FD uptake in the presence and absence of insulin. We found that insulin-stimulated FD uptake in the cells pretreated with the MEK inhibitor was only slightly less (by ~13%) than that seen in the controls (Fig. 9). To verify that PD-98059 was inhibiting MEK, we per-
formed a Western blot using an antibody specific for active (phosphorylated) MEK. A set of BAT cells was pretreated with either the inhibitor or with the 0.5% Me2SO carrier alone and then with insulin. Two bands, one at 42 kDa and another less intense band at 44 kDa, consistent with the known relative molecular mass of the MEK proteins (9), were observed in the BAT cells 5, 10, and 15 min after stimulation with 70 nM insulin. No active MEK species were detected in the cells pretreated with the inhibitor, indicating that this pathway was effectively inhibited by PD-98059 under these experimental conditions (data not shown).

Effect of wortmannin, an inhibitor of PI 3'-kinase activity, on insulin-stimulated FPE in HIRc-B, BAT, and 32D cells. PI 3'-kinase activity is stimulated when the regulatory p85 subunit of the enzyme binds to phosphotyrosines in IRS-1 (36). The fungal metabolite wortmannin inhibits PI 3'-kinase activity in intact cells with half-maximal inhibition generally occurring between 5 and 10 nM (52). To assess whether PI 3'-kinase had a role in insulin-stimulated FPE, the HIRc-B, BAT, and 32D/Ir/IRS-1 cells were pretreated for at least 15 min with 100 nM wortmannin, and then insulin-stimulated FD uptake was assayed (Fig. 10). HIRc-B cells treated with 100 nM wortmannin exhibited 30–70% of the insulin-stimulated FD uptake seen in the untreated controls (70% for the experiment shown). In BAT cells treated under similar conditions, wortmannin-treated cells exhibited 85–95% of the insulin-stimulated FD uptake seen in controls. At concentrations of wortmannin expected to be more specific for PI 3'-kinase (1, 5, and 10 nM), there was no significant decrease in insulin-stimulated FPE in either the HIRc-B or the BAT cells (data not shown). Increasing the pretreatment time with wortmannin to 1 h at 37°C also did not increase the inhibition in these cells. Interestingly, preincubating these cells with both 3 mM amiloride and 100 nM wortmannin completely abolished insulin-stimulated uptake of FD. This suggests that the amiloride-resistant component of insulin-stimu-
lated uptake (presumably mediated by clathrin-coated vesicles) is sensitive to wortmannin.

In contrast to the HIRc-B and BAT cells, treatment of the 32D/IR/IRS-1 cells with 100 nM wortmannin completely inhibited insulin-stimulated FPE (Fig. 10). Furthermore, insulin-stimulated FPE was inhibited at concentrations of wortmannin expected to be specific for PI 3'-kinase, with only 20% of insulin-stimulated FPE remaining in cells pretreated with 10 nM wortmannin (data not shown). These results suggest that PI 3'-kinase activity is required for insulin-stimulated FPE in the 32D/IR/IRS-1 cells.

Fig. 8. Expression of exogenous Ras proteins and the effect on insulin-stimulated FPE in brown adipose tissue (BAT) cells. A: Ras expression was analyzed by Western blot using equal amounts of protein (~100 µg/lane) from untransfected BAT cell line B4-4 (lane 1) and clonal BAT cell lines expressing either the exogenous wild-type H-Ras (lanes 2 and 3) or the 17N dominant negative Ras mutant (lane 4). B: insulin-stimulated FPE was measured in quiescent BAT cell lines as detailed in EXPERIMENTAL PROCEDURES, except that cells were treated with increasing doses of insulin (0, 0.07, 0.7, 7, 70, and 700 nM) for 30 min at 37°C or 4°C. Points represent the mean fluorescence per cell ± SD of the triplicate samples, corrected for the fluorescence at 4°C. Data from untransfected BAT cells: ○, BAT/Ras clone 5; ●, BAT/Ras clone 2–2; and △, BAT/17N Ras clone 10.

Fig. 9. Treatment of BAT cells with the mitogen-activated protein kinase kinase (MEK) inhibitor PD-98059: effect on insulin-stimulated FPE. BAT cells were treated with 100 µM PD-98059 in 0.5% Me2SO or with 0.5% Me2SO alone for 30 min at 37°C and then were treated with FD and insulin (hatched bars) or FD alone (open bars) for another 30 min at 37°C. Bars indicate the means ± SD of the replicates. Differences between insulin-stimulated levels of FPE in the 2 sets of samples were not significant (P ≤ 0.133).

Fig. 10. Pretreatment of HIRc-B, BAT, and 32D/IR/IRS-1 cell lines with 100 nM wortmannin: effect on insulin-stimulated FPE. Quiescent HIRc-B, BAT, and 32D/IR/IRS-1 cells were pretreated with 100 nM wortmannin in 0.01% Me2SO (filled bars) or with 0.01% Me2SO alone (open bars) for 15 min. Afterward, FD (filled bars) or FD and insulin (hatched and crosshatched bars) were added, and the cells were incubated for an additional 60 min at 37°C. Cells were pelleted, washed, fixed, and analyzed by FACS as indicated in EXPERIMENTAL PROCEDURES. Bars represent the mean ± SD fluorescence per cell from 3 replicates for BAT and 32D/IR/IRS-1 cells and 6 replicates for HIRc-B cells.
DISCUSSION

Our findings in this study support the idea that increased FPE is a general response to insulin in cells that express its receptors (33). This response was observed in every insulin-sensitive cell line that we examined and has been observed by others in KB cells (24, 33), 3T3-L1 cells (14), rat H35 hepatoma cells (15), the human monocyte cell line U-937 (27, 38), Xenopus oocytes (34), and in primary cultures of rat adipocytes (13) and hepatocytes (35). However, one apparent exception is the insulinoma cell line bTC6-F7 in which insulin reportedly activates its receptor but does not increase FPE (60). The present study has identified the proximal components of the insulin-stimulated FPE pathway as the insulin receptor, its substrate IRS-1, and Ras. It is conceivable that one of these components is defective or absent in the bTC6-F7 cell line, uncoupling the activation of the receptor from FPE.

Our studies show that the tyrosine kinase activity of the insulin receptor is essential for insulin-stimulated FPE. Although the greatest increase in insulin-stimulated FPE was observed in HIRc-B cells, a Rat-1 cell line that overexpresses the normal human insulin receptor, no increase beyond that of the parental Rat-1 cell line was observed in the A/K1018-B line, which expresses a kinase-deficient mutant of the human insulin receptor. Previous work has shown that the receptor tyrosine kinase activity is required in these cells, not only for the mitogenic and metabolic effects of insulin (30) but also for the endocytosis of the insulin receptor and cell ruffling (4, 26, 30). The dependence of insulin-stimulated FPE on insulin receptor tyrosine kinase activity has not been examined previously, to our knowledge. Presumably, the tyrosine kinase activity would be essential to stimulation of FPE in all cell types that exhibit this response.

IRS proteins are phosphorylated by the activated insulin receptor and its relatives, the insulin-like growth factor receptors (36). IRS proteins are essential for insulin-stimulated mitogenesis (54) and appear to play a role in GLUT-4 glucose transporter recruitment to the plasma membrane (21, 41). Our studies showed that IRS-1 also plays a role in mediating insulin-stimulated FPE. The 32D cell line, which lacks IRS proteins, exhibited some insulin-stimulated FPE (Fig. 6). However, the level of insulin-stimulated FPE in 32D/IRS-1 cells was increased as much as sixfold over that of control 32D cells or 32D/IR cells. We also noted that cells expressing IRS-1 responded to insulin as strongly as those expressing both the insulin receptor and IRS-1. The small number of endogenous receptors (~500/cell; see Ref. 54) was thus sufficient for generation of the full response when IRS-1 was present. It is also noteworthy that the FPE response of cells to insulin is more sensitive than insulin induction of c-fos and egr-1. In HIRc-B cells, we showed that FPE was almost maximally stimulated at 0.7 nM insulin, whereas insulin-induced c-fos and egr-1 gene transcription was not observed until 10-fold more insulin was applied (50). This difference in response sensitivity is also likely to account for the fact that, in 32D cells, others have reported that overexpression of the insulin receptor was necessary to observe insulin-stimulated c-fos and egr-1 expression (16), whereas our present data indicate that endogenous receptors are sufficient for insulin-stimulated FPE in these cells (16).

The dependence of insulin-stimulated FPE on IRS proteins suggested that factors that bind to the IRS scaffold might be important mediators of insulin-stimulated FPE. Certain phosphotyrosines within the IRS-1 protein act as docking sites for GRB2/SOS, facilitating the interaction of the SOS guanine nucleotide exchange factor with Ras (47, 53). This association between SOS and Ras results in the conversion of inactive Ras-GDP to active Ras-GTP. Injection of Ras into quiescent fibroblasts has been shown to stimulate ruffling and FPE (5). The influence of exogenous wild-type Ras and the dominant negative 17N Ras on insulin-stimulated FPE was investigated in BAT cells. Stable overexpression of exogenous wild-type Ras proteins augmented insulin-stimulated FPE, whereas the mutant 17N Ras inhibited it (Fig. 8). These results strongly suggest that insulin-stimulated FPE is mediated through Ras (with the caveat that some contribution to this effect could potentially be due to the interaction of the overexpressed Ras proteins with components of other G protein-regulated processes that are involved in FPE, i.e., Rab5-regulated endocytic vesicle trafficking and Rac-regulated actin polymerization).

Ras itself has been shown to represent a point of bifurcation for signals emanating from activated receptor protein tyrosine kinases; signals to the nucleus are transmitted through the MAP kinase cascade, whereas signals to the membrane (for ruffling) are mediated by the Rac family of GTP-binding proteins (19, 20). Our experiments in the BAT cells using the specific MEK inhibitor PD-98059 indicate that the MAP kinase cascade is not involved in signaling insulin-stimulated FPE, at least under the conditions of these experiments (Fig. 9). Further experiments with dominant negative Rac proteins may show a role for Rac in insulin-stimulated FPE.

PI 3′-kinase has been implicated in vesicular trafficking due to its homology to the yeast protein, VSP34, a component of the lysosomal sorting apparatus. PI 3′-kinase activity is coprecipitated with most activated receptor protein tyrosine kinases (44) and may have a role in the internalization of activated receptors. PI 3′-kinase is also implicated in insulin-stimulated GLUT-4 translocation and growth factor-induced cell ruffling and FPE (reviewed in Ref. 22). Most of the evidence for PI 3′-kinase activity in ruffling and FPE has been obtained using wortmannin, an inhibitor of PI 3′-kinase activity (23, 24). We also used wortmannin to examine the role of PI 3′-kinase in insulin-stimulated FPE in HIRc-B, BAT, and 32D/IR/IRS-1 cells. However, the interpretation of our wortmannin inhibition experiments was complicated by two factors, namely, that higher concentrations of wortmannin have been shown to inhibit enzymes other than PI

E103 American Journal of Physiology – Endocrinology and Metabolism

Downloaded from aipendoc.physiology.org on May 3, 2005
3'-kinase, including myosin light chain kinase (37), and that a wortmannin-sensitive PI 3'-kinase activity has been shown to be required for the fusion of membrane folds in macroinocytic vesicles in macrophages (3). In our experiments, in 32D cells, insulin-stimulated FPE was sensitive to wortmannin at concentrations expected to be specific for PI-3 kinase (Fig. 10). However, the inference that PI 3'-kinase is involved in insulin-stimulated FPE in these cells is invalid if PI 3'-kinase activity is required for membrane fusion events, as it was in macrophages (both 32D cells and macrophages are of hematopoietic lineage).

In contrast to the results in 32D cells, wortmannin had no significant effect on insulin-stimulated FPE in either the BAT cells or the H1Rc-B cells at nanomolar concentrations (Fig. 10). Our interpretation of these results was that a wortmannin-sensitive PI 3'-kinase activity was not essential for insulin-stimulated FPE in these cells. Recently, others have shown that wortmannin treatment also had minimal effects on either basal or insulin-stimulated FPE in 3T3-L1 fibroblasts, at concentrations at which it was inhibitory to trafficking of glucose transporters and transferrin receptors (18). However, wortmannin treatment has been shown to inhibit insulin-stimulated FPE and ruffling in CHO-T cells, underscoring the fact that the role of PI 3'-kinase may be cell-type specific (24, 60).

The physiological role of insulin-stimulated FPE has been the subject of considerable speculation (2, 25, 27, 59) but remains unknown. An essential question that remains unanswered is the extent to which this process changes in parallel with the other biochemical pathways that are markedly altered in insulin-resistant states, such as type 2 diabetes and obesity. If, for example, patients developed severe insulin resistance in terms of glucose transport but remained normally sensitive to insulin in terms of FPE, one could imagine that the increased flux of extracellular nutrients in the cells might have deleterious consequences. An example might be the common clinical observation that type 2 diabetic patients typically gain weight when placed on the high doses of insulin often required to achieve normoglycemia in this insulin-resistant state. Studies of FPE in such insulin-resistant cells will be necessary to answer these and other intriguing questions about the physiological role of insulin-stimulated FPE and its possible alterations in pathological states.

We are very grateful to J. Michael Cook and Alan Fisher from the Duke Comprehensive Cancer Center Flow Cytometry Facility for performing the FACS analyses.

P. J. Blackshear was an Investigator and D. M. Pitterle was an Associate of the Howard Hughes Medical Institute during the course of these studies. M. F. White is currently an Investigator of the Howard Hughes Medical Institute.

Address for reprint requests: P. J. Blackshear, A2–05, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709.

Received 23 February 1998; accepted in final form 4 September 1998.

REFERENCES

